MISSOURI

S&l

Adapting Risk Management
and Computational Intelligence
Network Optimization Techniques
to Improve Traffic Throughput and

Tail Risk Analysis

by

Donald Wunsch, Ph.D.
Bryce Schumacher

A National University Transportation Center
at Missouri University of Science and Technology

Disclaimer

The contents of this report reflect the views of the author(s), who are responsible for the facts and the
accuracy of information presented herein. This document is disseminated under the sponsorship of
the Department of Transportation, University Transportation Centers Program and the Center for
Transportation Infrastructure and Safety NUTC program at the Missouri University of Science and
Technology, in the interest of information exchange. The U.S. Government and Center for

Transportation Infrastructure and Safety assumes no liability for the contents or use thereof.

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NUTC R348

4. Title and Subtitle 5. Report Date
Adapting Risk Management and Computational Intelligence Network Optimization April 2014

Techniques to Improve Traffic Throughput and Tail Risk Analysis

6. Performing Organization Code

7. Author/s 8. Performing Organization Report No.

Donald Wunsch Project # 00042533
Bryce Schumacher

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

. 11. Contract or Grant No.
Center for Transportation Infrastructure and Safety/NUTC program

Missouri University of Science and Technology
220 Engineering Research Lab
Rolla, MO 65409

DTRTO06-G-0014

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered
U.S. Department of Transportation Final

Research and Innovative Technology Administration . - "

1200 New Jersey Avenue, SE 14. Sponsoring Agency Code

Washington, DC 20590

15. Supplementary Notes

16. Abstract

Risk management techniques are used to analyze fluctuations in uncontrollable variables and keep those fluctuations from impeding
the core function of a system or business. Examples of this are making sure that volatility in copper and aluminum prices do not force
an aircraft manufacturer to abruptly shut down manufacturing and making sure a failed bank or state does not cause an entire financial
system to fail. Computer network optimization techniques involve many nodes and routes communicating to maximize throughput of
data while making sure not to deadlock high priority or time sensitive data. This project will involve exploring possible remappings of
these application spaces from risk and computer networks to traffic. Some of these possible mappings include mapping flash crashes
and black swans to traffic jams, bank failure to construction or traffic accidents, data packets to vehicles, network routers to traffic
lights and other intersection policies. Due to the large data and large solution/ state/ policy spaces computational intelligence
techniques are a natural fit for traffic as they are for risk management and computer network optimization.

17. Key Words 18. Distribution Statement

Risk, optimization, data, finance, traffic, infrastructure No restrictions. This document is available to the public through the
National Technical Information Service, Springfield, Virginia 22161.

19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. Of Pages 22. Price

unclassified unclassified 12

Form DOT F 1700.7 (8-72)

Adapting Risk Management and Computational Intelligence Network Optimization
Techniques to Improve Traffic Throughput and Tail Risk Analysis

Donald Wunsch, Ph.D.

Bryce Schumacher

Data

The data used included 365 days of hourly data in 2011 for training and 366 days of hourly data in 2012 for
testing. The data comes from ATR175, a traffic recorder, on an interstate between a metropolitan area and
suburb area. The data is an approximation of the number of cars that pass the recorder each hour. This data
and other free traffic data can be found at http://www.dot.state.mn.us/traffic/data/

Daily Profiles
Below is a sample of hourly data from 28 consecutive days from the 2012 data. Columns correspond to days of
the week and rows correspond to consecutive weeks.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

New Year’s weekend

Typical Friday

Looking at the traffic plotted for each day above it is possible to quickly identify several common shapes. Typical
weekdays highlighted in green show a wide range of morning commute hours but show a large 5 PM peak for

the commute home. Fridays do not have as many cars as regular weekdays (different vertical scale for each
graph) and have no 5 PM peak as workers head home early for the weekend. Weekend traffic tends to be tightly
banded around mid-day. Mondays after a holiday and Monday holidays are often have a profile similar to a
weekend.

Seasonal Trend

The following chart shows the entire 2012 year with low traffic late night and early morning hours removed.
Notice the gradual increase from the beginning of the year in traffic. The peak occurs during summer vacation
season. There is an additional peak for the winter holidays.

' ll"w.n‘uﬂ
AU

JUE A l |.'-||_'.|“ i
.\llil'\ di ! ?"Ll‘r
‘ |

500

Model Building for Traffic Forecasting
For this investigation the goal was to predict a 24 hour trace of each day. As an example: predicting all 24 hours
of tomorrow using only today’s traffic counts and any other past data.

Classical decomposition
The classical decomposition as described in [2] is:

Xi+me+ s+ Yy

Where X, is the predicted number of cars for an hour, m;is a trend component, s; is a seasonal component, and
Y.is a random noise component or non-predictable innovation.

It is possible to build a linear model that is a combination of trend and seasonal components. This is very typical
way of doing time series prediction. A model such as this would allow for easy calculation of predictive accuracy
and average and standard deviation of prediction errors. This allows for the calculation of confidence intervals
and would help in planning for city resources. However it was decided that this model would not be optimal for
this application. Using this method a separate model would be needed for each hour of the day. Additionally,
both the day-of-the-year and day-of-the-month seasonal components being in piecewise form the component
coefficients would resemble a large lookup table where the size of the table would be similar in size to the
training data. With each coefficient in the table relying of a very small N samples the regressions that were used
to create them would not be reliable. These features of the dataset reduce the impact of the best reasons to use
this method; simplicity and transparency/ confidence intervals.

Multilayer Perceptron or similar

A multilayer perceptron neural network or similar can be used to map recent data points, the day of the
week, and other information to 24 predictions for the next day. Additionally information about holidays and
snow days could be included in the mapping. This type of model is appealing due to ease of deployment and
automatic training. Concerns include the black box nature of a multilayer perceptron. Operators would need to
put in considerable effort to decode a strange or bad prediction. Also the range of predictions is not known. The
network can make a prediction that is dissimilar to anything seen in the past. Lastly the dataset in this
investigation is unbalanced in more than one way. Basic batch training of perceptrons included minimizing the
error across the entire dataset. Because of the low frequency of holidays and weather related events additional
steps and tweaks would need to be made during training.

KNN classifier
A KNN classifier was shown to be a good predictor of 23 hour daily electricity load trace forecasting [1]

A KNN classifier would be a more passive and robust approach for this data. For the implementation in
this investigation patterns from the training data are formed by combining adjacent days. Each pattern is 48
hours. For testing, the current 48 hours is compared against the training samples to find the nearest 4
neighbors. Specifically the classifier looks for the four 48 hour patterns that look like the current 48 hours in
order to predict 24 hours of tomorrows traffic. If today is Tuesday March 25" and the model is trying to predict
all 24 hours of traffic for tomorrow, Wednesday March 26™ then it would combine the 48 hours of Monday 24™
and Tuesday March 25" into a vector to compare against the KNN knowledge base. The four nearest neighbors
each contribute 24 potential “next day” patterns that are then averaged into the prediction for Wednesday. This
provides many benefits over the above methods in transparency and model simplicity. First the prediction
cannot be outside what has actually been observed in the past since it is an average of previous days that
actually occurred. An operator would be able to determine with minimal effort what is contributing to each
prediction. There is no longer 24 separate black or gray box transfer functions from inputs to the 24 hours that
are being predicted. Each 24 hour pattern now moves together through the model and each nearest neighbor
contributes a continuous 24 hour trace to be averaged into the final model. Longer term seasonal components
are also addressed. The incoming pattern will naturally associate with previous patterns that have the same
seasonal contribution. The effect of long term non-seasonal trends is reduced as new observed patterns are
added to the model. These new patterns already contain the trend component and will also associate
appropriately. In this model outliers can now be handled appropriately. Outliers may consist of snow days or
holidays occurring on different work days than normal. For example: if it begins to snow during work hours on a
Tuesday then the shape of traffic from Monday and Tuesday may match a Wednesday snow fall from a previous
year. In this case several things happen. First the previous pattern can be used to predict traffic for the next
day’s snow day even though they happened at different time during the week. This is because the model is blind
to the day of the week and only looks for traffic shape associations. Second the model does not use only one
training data outlier to make a prediction. This would be inappropriate as outliers by definition do not have a
confidence bound, information/entropy. The outlier will be averaged with three other neighbors to make a
more conservative prediction. The outlier helps in the prediction but is appropriately not solely trusted with the
task.

When additional data is observed it can seamlessly be added to the KNN model. There is no need for a
new training and validation. If the knowledge base becomes too large it can be reduced by known methods
without affecting the accuracy significantly.[3]

Results
The KNN predictor with k=4 was able to predict traffic with an average error of 55 cars per hour when predicting
24 hour ahead. ATR175 counted 4,088,771 cars for 2012 or on average 467 per hour.

For prediction of number of cars for 5PM (the hour with the most cars) the KNN predictor had an error 112 cars
per hour with an average of 906 cars passing the traffic recorder every hour. An MLP neural network, and an
AR(e=) approximation were also used as a comparison. Additionally the two best models; KNN and MLP were
combined in an ensemble. The average error per day at 5PM was as follows. Lower is better.

Method Error per day in number of cars
passing the traffic recorder at 5 PM

KNN 112

MLP NN 130

AR(o°) 197

KNN/MLP ensemble 109

Attempts at combining input data from separate traffic recorders (ATR191 and ATR208) were not successful at
increasing prediction accuracy. These traffic recorders were also located between urban and suburban areas on
interstates used for commuting. It is suspected that the information contained at these recorders correlated too
closely with those at ATR175 due to the day of the week, climate, and holidays being identical throughout the
city.

Conclusion

The KNN method in this investigation outperformed both the MLP neural network and an autoregressive model.
The KNN had a lower prediction error, greater model transparency, and can be updated with new information
simply by adding patterns to the knowledge base instead of retraining.

1. Al-Qahtani, Fahad H., Crone, Sven F. Multivariate k-Nearest Neighbor Regression for Time Series data -

a novel Algorithm for Forecasting UK Electricity Demand, ISF 2013, Seoul, Korea. http://forecasters.org/wp/wp-

content/uploads/gravity forms/7-2a51b93047891f1ec3608bdbd77ca58d/2013/07/2013-ISF-KNN-for-Time-Series-

Data.pdf

2. Brockwell, Peter J. and Davis, Richard A. Introduction to Time Series and Forecasting. New York: Springer, 2002.
Print.

3. P.E.Hart, The Condensed Nearest Neighbor Rule. IEEE Transactions on Information Theory 18 (1968) 515-516.
doi: 10.1109/TIT.1968.1054155

Code appendix

traffic4.py

import csv

import matplotlib.pyplot as plt
import numpy

import operator

import math

import copy

import convert2py

test =]
train =[]

with open('ATR175.txt', 'rb') as csvfile:
testreader = csv.reader(csvfile, delimiter="")
for row in testreader:
test.append(', ".join(row))
foriin range(len(test)):
test[i] = test[i].split("\t")
foriin range(len(test)):
for j in range(4,len(test[0])):
test[i][j] = float(test[il[j])

with open('ATR1752011.txt", 'rb') as csvfile:
trainreader = csv.reader(csvfile, delimiter="")
for row in trainreader:
train.append(', '.join(row))
foriin range(len(train)):
train[i] = train[i].split('\t')
foriin range(len(train)):
for j in range(4,len(train[0])):
train[i][j] = float(train[i][j])

trainsum =0
testsum=0

foriin range(len(train)):
for j in range(4,len(train[i])):
trainsum = trainsum + trainl[i][j]
foriin range(len(test)):
for j in range(4,len(test[i])):
testsum = testsum + test[i][j]
print trainsum
print testsum

difflist = []
diffhour = [0]*24
predictionlist =[]
foriin range(1,len(test)-1):
nndist = [10000, 10000, 10000, 10000]
nn =[0,0,0,0]
for j in range(1,len(train)-1):
dist=0
diffm1 = map(operator.sub, test[i-1][4:], train[j-1][4:])
diffm0 = map(operator.sub, test[i][4:], train[j][4:])
dist = math.sqrt(sum(k**2 for k in diffm1))
dist = math.sqrt(sum(k**2 for k in diffmQ))

if dist < nndist[0]:
nndist[3] = nndist[2]
nn[3] = nn[2]
nndist[2] = nndist[1]
nn[2] = nn[1]
nndist[1] = nndist[0]
nn[1] = nn[0]
nndist[0] = dist
nn[0] =]
else:
if dist < nndist[1]:
nndist[3] = nndist[2]
nn[3] = nn[2]
nndist[2] = nndist[1]
nn[2] = nn[1]
nndist[1] = dist
nn[1] =]
else:
if dist < nndist[2]:
nndist[3] = nndist[2]
nn[3] = nn[2]
nndist[2] = dist
nn[2] =]
else:
if dist < nndist[3]:
nndist[3] = dist
nn(3] =j

print test[i][:3]

print train[nn[0]][:3]

print train[nn[0]+1][:3]

print nn[1]

prediction = map(operator.add, train[nn[0]+1][4:], train[nn[1]+1][4:])
prediction = map(operator.add, prediction, train[nn[2]+1][4:])
prediction = map(operator.add, prediction, train[nn[3]+1][4:])

for I'in range(len(prediction)):

prediction[l] = prediction[l]/4
for l'in range(4,len(test[i+1])):

diffhour[l-4] = diffhour[l-4] + abs(test[i+1][l] - prediction[l-4])

difflist.append(sum(abs(l) for | in map(operator.sub, test[i+1][4:], prediction)))
predictionlist.append(prediction)

convert2py.convert2py('mlp2.c', [200])
import trained_net

print test[3][4:]
tensor = copy.deepcopy(test[1][4:])
foriin range(len(test[2][4:])):
tensor.append(test[2][4+i])
print trained_net.trained_net(tensor,[0]*24)

diffvector =[]
tensorlist = []
foriin range(len(test)-2):
tensor = copy.deepcopy(test[i][4:])
for j in range(len(test[i+1][4:])):
tensor.append(test[i+1][4+]])

tensorlist.append(tensor)
tensor =]

neuraldiff =[]
ensemblelist =[]
ensemblediff =[]
knndiff =[]
foriin range(len(test)-2):
netout = trained_net.trained_net(tensorlist[i], [0]*24)

ensemble =]
for j in range(len(predictionlist[i])):
ensemble.append(numpy.average([predictionlist[i][j], netout[j]]))

plt.subplot(3,1,1)

plt.plot(range(len(test[i][4:])),test[i+2][4:],range(len(predictionlist[i])),predictionlist[i],range(len(test[i][4:])),netout,
range(len(ensemble)), ensemble)

plt.subplot(3,1,2)

plt.plot(range(len(predictionlist[i])),predictionlist[i])

plt.subplot(3,1,3)

plt.plot(range(len(test[i][4:])),trained_net.trained_net(tensor,[0]*24))

plt.show()

tensor =[]

neuraldiff.append(test[i+2][4+16] - netout[16])

ensemblediff.append(test[i+2][4+16] - ensemble[16])
knndiff.append(test[i+2][4+16] - predictionlist[i][16])

psij = [0.02332, 0.05239, -0.04349, -0.03035, 0.05296, 0.00598, -0.05154, 0.01600, 0.04105, -0.03197, -0.02465, 0.03991, -0.00616, -
0.03953, 0.01082, 0.03209, -.02343, -.01993, .03003, .00591, -.03028, .00718, .02504, -.01711, -.01604, .02255, .00543, -
.02315,.00464,.01950,-.01245,-.01286,.01690,.00485,-.01768,.00290,.01516,-.00902,-.01027,.01265,.00423,-.01348,.00172,.01177,-
.00651,-.00818, .00944,.00363,-.01026,-.00336]

arknn = copy.deepcopy(predictionlist)
foriin range(50, len(predictionlist)):
arknn[i][16] = arknn[i][16] - 25
for j in range(len(psij)):
arknn[i][16] = arknn[i][16] - psij[j]*arknn[i-j-1][16]
arknndiff =[]
total=[]
foriin range(len(arknn)):
arknndiff.append(test[i+2][4+16] - arknn[i][16])
total.append(test[i][4+16])
plt.plot(range(len(neuraldiff)), neuraldiff, range(len(neuraldiff)), ensemblediff, range(len(neuraldiff)), knndiff)
plt.show()
fileout = open("knndiff.csv", "wb");

for i in range(len(knndiff)):
fileout.write(str(knndiff[i]))
fileout.write('\n')

for i in range(len(neuraldiff)):
neuraldiff[i] = abs(neuraldiff[i])
ensemblediff[i] = abs(ensemblediff[i])
knndiff[i] = abs(knndiff[i])
arknndiff[i] = abs(arknndiff[i])

print 'neural error \t', numpy.average(neuraldiff)

print 'ensemble error \t', numpy.average(ensemblediff)
print 'knn error \t', numpy.average(knndiff)

print 'autoreg error \t', numpy.average(arknndiff)

print 'average \t', numpy.average(total)

convertZpy.py
80 lines
See attached

mlp2.c
800 lines
See attached

trained_net.py
1300 lines
See attached

MBP
http://mbp.sourceforge.net/
MLPtest.csv

MLPtrain.csv

	NUTC Final Report Cover Page
	Adapting Risk Management and Computational Intelligence Network Optimization Techniques to Improve Traffic Throughput and Tail Risk Analysis
	Disclaimer

	R348

